Mixed Numbers and Unit Fractions

Write each mixed number as the product of a whole number and a unit fraction.

9. Write Math Explain how you found the answer in Exercise 1. Possible explanation: First I rewrote the mixed number $1\frac{1}{3}$ as a fraction greater than $1, \frac{4}{3}$. Then I used repeated addition to write $\frac{4}{3}$ as $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$, or $4 \times \frac{1}{3}$.

Multiples of Mixed Numbers

List the next three multiples of the mixed number. Write each multiple as a mixed number or as a whole number.

9. Write Math Describe a method other than multiplication that you can use to find the next three multiples of the mixed number in Exercise 7.

Possible answer: I can use repeated addition. To get the first multiple, start with $1\frac{3}{5}$ and add $1\frac{3}{5}$. To get the second multiple, add $1\frac{3}{5}$ to the first multiple. To get the third multiple, add $1\frac{3}{5}$ to the second multiple.

Lesson 8.3 Enrich

Fraction of a Whole Number

Find the product. Write the product as a whole number.

1.	$\frac{1}{8} \times 24 =$	2. $\frac{2}{3} \times 15 =$
	3	10
3.	$\frac{3}{5} \times 10 =$	4. $\frac{4}{7} \times 14 =$
	6	8
5.	$\frac{5}{6} \times 18 =$	6. $\frac{3}{4} \times 16 =$
	15	12
7.	$\frac{2}{9} \times 27 =$	8. $\frac{7}{8} \times 32 =$
	6	28
9.	$\frac{9}{10} \times 50 =$	10. $\frac{4}{5} \times 45 =$
	45	36
11.	$\frac{5}{12} \times 60 =$	12. $\frac{8}{9} \times 54 =$
	25	48

13. Write Math Explain how you can tell if the product of a fraction and a whole number will be a whole number.

Possible explanation: when the denominator of the fraction is a factor of the whole number, the product will be a whole number.

Unknown Numbers

Find the unknown number that makes each equation true.

Heights and Depths

Solve each problem. You may find it helpful to draw a diagram.

- **1.** The depth of Lake Carl is about $1\frac{1}{8}$ miles. Lake Susan is 3 times as deep as Lake Carl. Lake Wayne is 2 times as deep as Lake Susan. How much deeper is Lake Wayne than Lake Susan?
- **2.** Mount Rogers rises $\frac{1}{4}$ mile above sea level. Mount Taylor rises 6 times as high as Mount Rogers. Mount Sullivan rises 2 times as high as Mount Rogers. What is the difference in the elevation of Mount Taylor and the elevation of Mount Sullivan?
- **3.** A certain tree was $5\frac{1}{3}$ feet tall when it was first planted. A few years later, the tree is 4 times as tall as it was when it was first planted. How much has the tree grown since it was first planted?

16 feet

 $\frac{4}{4}$ or 1 mile

4. Write Math Explain how you solved Problem 3.

Possible explanation: I drew a comparison model to compare the different heights of the tree. I used the model to write the equation $t = 4 \times 5\frac{1}{3}$. I solved the equation and got $t = 21\frac{1}{3}$. This represents the tree's new height. To find how much the tree had grown, I subtracted $21\frac{1}{3} - 5\frac{1}{3}$, which is 16 feet.

