Mixed Numbers and Unit Fractions

Write each mixed number as the product of a whole number and a unit fraction.

1. $1 \frac{1}{3}$

$$
4 \times \frac{1}{3}
$$

2. $3 \frac{1}{2}$
$7 \times \frac{1}{2}$
3. $1 \frac{3}{5}$

$$
8 \times \frac{1}{5}
$$

4. $2 \frac{3}{8}$
$19 \times \frac{1}{8}$
5. $3 \frac{3}{4}$

$$
15 \times \frac{1}{4}
$$

6. $5 \frac{2}{3}$
$17 \times \frac{1}{3}$
7. $4 \frac{2}{5}$

$$
22 \times \frac{1}{5}
$$

8. $5 \frac{1}{5}$

9. Write Math Explain how you found the answer in Exercise 1.

Possible explanation: First I rewrote the mixed
number $1 \frac{1}{3}$ as a fraction greater than $1, \frac{4}{3}$. Then I used repeated addition to write $\frac{4}{3}$ as $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$ $\frac{1}{3}$, or $4 \times \frac{1}{3}$.

Multiples of Mixed Numbers

List the next three multiples of the mixed number. Write each multiple as a mixed number or as a whole number.

1. $1 \frac{1}{8}$

$$
2 \frac{2}{8}, 3 \frac{3}{8}, 4 \frac{4}{8}
$$

2. $2 \frac{1}{2}$

$$
5,7 \frac{1}{2}, 10
$$

3. $1 \frac{2}{3}$

$$
3 \frac{1}{3}, 5,6 \frac{2}{3}
$$

4. $2 \frac{1}{3}$

$$
4 \frac{2}{3}, 7,9 \frac{1}{3}
$$

5. $3 \frac{1}{5}$

$$
6 \frac{2}{5}, 9 \frac{3}{5}, 12 \frac{4}{5}
$$

6. $1 \frac{1}{4}$

$$
2 \frac{2}{4}, 3 \frac{3}{4}, 5
$$

7. $1 \frac{3}{5}$

$$
3 \frac{1}{5}, 4 \frac{4}{5}, 6 \frac{2}{5}
$$

8. $2 \frac{3}{4}$

$$
5 \frac{2}{4}, 8 \frac{1}{4}, 14
$$

9. Write Math Describe a method other than multiplication that you can use to find the next three multiples of the mixed number in Exercise 7.

Possible answer: I can use repeated addition. To get the first multiple, start with 11_{5}^{3} and add $1 \frac{3}{5}$. To get the second multiple, add $1 \frac{3}{5}$ to the first multiple. To get the third multiple, add $1 \frac{3}{5}$ to the second multiple.

Fraction of a Whole Number

Find the product. Write the product as a whole number.

1. $\frac{1}{8} \times 24=$
2. $\frac{2}{3} \times 15=$

3
3. $\frac{3}{5} \times 10=$
\qquad
5. $\frac{5}{6} \times 18=$

7. $\frac{2}{9} \times 27=$
\qquad
9. $\frac{9}{10} \times 50=$
\qquad
11. $\frac{5}{12} \times 60=$
\qquad
6. $\frac{3}{4} \times 16=$
12
8. $\frac{7}{8} \times 32=$

28
10. $\frac{4}{5} \times 45=$

36
12. $\frac{8}{9} \times 54=$
\qquad
13. Write Math Explain how you can tell if the product of a fraction and a whole number will be a whole number.
Possible explanation: when the denominator of the fraction is a factor of the whole number, the product will be a whole number.

Unknown Numbers

Find the unknown number that makes each equation true.

1. $\square \frac{3}{4}=2 \frac{1}{4}$
2. $4 \times \frac{\square}{5}=1 \frac{3}{5}$

3
3. $7 \times \square=1 \frac{5}{9}$

4. $2 \times-\frac{1}{3}=6 \frac{2}{3}$

3
5. $\times 1 \frac{5}{6}=9 \frac{1}{6}$

5
7. Write Math Explain how you found the unknown number in Exercise 3.
Possible answer: first, I wrote 7 as $\frac{7}{1}$
and $1 \frac{5}{9}$ as the fraction $\frac{14}{9}$. I rewrote the multiplication sentence as $\frac{7}{1} \times \square=\frac{14}{9}$.
The unknown number must be a fraction, since the product is a fraction. To find the numerator of the unknown fraction,
I divided 14 by 7 to get 2 . To find the denominator of the unknown fraction, I divided 9 by 1 to get 9 . So the unknown number is $\frac{2}{9}$.

Heights and Depths

Solve each problem. You may find it helpful to draw a diagram.

1. The depth of Lake Carl is about $1 \frac{1}{8}$ miles. Lake Susan is 3 times as deep as Lake Carl. Lake Wayne is 2 times as deep as Lake Susan. How much deeper is Lake Wayne than Lake Susan?

$$
3 \frac{3}{8} \text { miles }
$$

2. Mount Rogers rises $\frac{1}{4}$ mile above sea level. Mount Taylor rises 6 times as high as Mount Rogers. Mount Sullivan rises 2 times as high as Mount Rogers. What is the difference in the elevation of Mount Taylor and the elevation of Mount Sullivan?

$$
\frac{4}{4} \text { or } 1 \text { mile }
$$

3. A certain tree was $5 \frac{1}{3}$ feet tall when it was first planted. A few years later, the tree is 4 times as tall as it was when it was first planted. How much has the tree grown since it was first planted?

16 feet
4. Write Math Explain how you solved Problem 3.

Possible explanation: I drew a comparison model to compare the different heights of the tree. I used the model to write the equation
$t=4 \times 5 \frac{1}{3}$. I solved the equation and got
$t=21 \frac{1}{3}$. This represents the tree's new height. To
find how much the tree had grown, I subtracted
$21 \frac{1}{3}-5 \frac{1}{3}$, which is 16 feet.

